Real number (argument of an inverse function): \(x\)
CInverse trigonometric functions: \(\arcsin x,\) \(\arccos x,\) \(\arctan x,\) \(\text {arccot }x\)
- Arcsine of a negative number
\(\arcsin \left( { – x} \right) =\) \( – \arcsin x\) - Expressing the arcsine in terms of arccosine
\(\arcsin x =\) \( -\pi/2 – \arccos x\) - \(\arcsin x =\) \( \arccos \sqrt {1 – {x^2}} ,\;\) \(0 \le x \le 1\)
- \(\arcsin x =\) \( -\arccos \sqrt {1 – {x^2}} ,\;\) \(-1 \le x \le 0\)
- \(\arcsin x =\) \( \arctan {\large\frac{x}{{\sqrt {1 – {x^2}} }}\normalsize},\;\) \({x^2} \le 1\)
- \(\arcsin x =\) \({\mathop{\rm arccot}\nolimits}\,{\large\frac{{\sqrt {1 – {x^2}} }}{x}\normalsize},\;\) \(0 \lt x \le 1\)
- \(\arcsin x =\) \({\mathop{\rm arccot}\nolimits}\,{\large\frac{{\sqrt {1 – {x^2}} }}{x}\normalsize} – \pi,\;\) \(-1 \le x \lt 0\)
- Arccosine of a negative number
\(\arccos \left( { – x} \right) =\) \( \pi – \arccos x\) - Expressing the arccosine in terms of arcsine
\(\arccos x =\) \( \pi/2 – \arcsin x\) - \(\arccos x =\) \( \arcsin \sqrt {1 – {x^2}} ,\;\) \(0 \le x \le 1\)
- \(\arccos x =\) \(\pi – \arcsin \sqrt {1 – {x^2}} ,\;\) \(-1 \le x \le 0\)
- \(\arccos x =\) \( \arctan \large\frac{{\sqrt {1 – {x^2}} }}{x}\normalsize,\;\) \(0 \lt x \le 1\)
- \(\arccos x =\) \( \pi + \arctan \large\frac{{\sqrt {1 – {x^2}} }}{x}\normalsize,\;\) \(-1 \le x \lt 0\)
- \(\arccos x =\) \({\mathop{\rm arccot}\nolimits}\,\large\frac{x}{{\sqrt {1 – {x^2}} }}\normalsize,\;\) \(- 1 \lt x \lt 1\)
- Arctangent of a negative number
\(\arctan \left( { – x} \right) =\) \( – \arctan x\) - Expressing the arctangent in terms of arccotangent
\(\arctan x =\) \( \pi/2 – \text {arccot }x\) - \(\arctan x = \arcsin \large\frac{x}{{\sqrt {1 + {x^2}} }}\normalsize\)
- \(\arctan x =\) \( \arccos \large\frac{1}{{\sqrt {1 + {x^2}} }}\normalsize,\;\) \(x \ge 0\)
- \(\arctan x =\) \( -\arccos \large\frac{1}{{\sqrt {1 + {x^2}} }}\normalsize,\;\) \(x \le 0\)
- \(\arctan x =\) \( {\large\frac{\pi }{2}\normalsize} – \arctan {\large\frac{1}{x}\normalsize},\;\) \(x \gt 0\)
- \(\arctan x =\) \( -{\large\frac{\pi }{2}\normalsize} – \arctan {\large\frac{1}{x}\normalsize},\;\) \(x \lt 0\)
- \(\arctan x =\) \( {\mathop{\rm arccot}\nolimits}\,{\large\frac{1}{x}\normalsize},\;\) \(x \gt 0\)
- \(\arctan x =\) \( {\mathop{\rm arccot}\nolimits}\,{\large\frac{1}{x}\normalsize} – \pi,\;\) \(x \lt 0\)
- Arccotangent of a negative number
\({\mathop{\rm arccot}\nolimits} \left( { – x} \right) = \pi – {\mathop{\rm arccot}\nolimits}\,x\) - Expressing the arccotangent in terms of arctangent
\({\mathop{\rm arccot}\nolimits}\,x =\) \( \pi/2 – \arctan x\) - \({\mathop{\rm arccot}\nolimits}\,x =\) \( \arcsin {\large\frac{1}{{\sqrt {1 + {x^2}} }}\normalsize},\;\) \(x \gt 0\)
- \({\mathop{\rm arccot}\nolimits}\,x =\) \(\pi – \arcsin {\large\frac{1}{{\sqrt {1 + {x^2}} }}\normalsize},\;\) \(x \lt 0\)
- \({\mathop{\rm arccot}\nolimits}\,x =\) \( \arccos {\large\frac{x}{{\sqrt {1 + {x^2}} }}\normalsize}\)
- \({\mathop{\rm arccot}\nolimits}\,x =\) \( \arctan {\large\frac{1}{x}\normalsize},\;\) \(x \gt 0\)
- \({\mathop{\rm arccot}\nolimits}\,x =\) \(\pi + \arctan {\large\frac{1}{x}\normalsize},\;\) \(x \lt 0\)