Angles (arguments of functions): \(\alpha\)
Trigonometric functions: \(\sin \alpha,\) \(\cos \alpha,\) \(\tan \alpha,\) \(\cot \alpha,\) \(\sec \alpha,\) \(\csc \alpha\)
Trigonometric functions: \(\sin \alpha,\) \(\cos \alpha,\) \(\tan \alpha,\) \(\cot \alpha,\) \(\sec \alpha,\) \(\csc \alpha\)
Integers: \(n\)
- The least period of the sine function is \(2\pi\) or \(360^\circ\):
\(\sin \left( {\alpha \pm 2\pi n} \right) = \sin \alpha\) - The least period of the cosine function is \(2\pi\) or \(360^\circ\):
\(\cos \left( {\alpha \pm 2\pi n} \right) = \cos \alpha\) - The least period of the tangent function is \(\pi\) or \(180^\circ\):
\(\tan \left( {\alpha \pm \pi n} \right) = \tan \alpha\) - The least period of the cotangent function is \(\pi\) or \(180^\circ\):
\(\cot \left( {\alpha \pm \pi n} \right) = \cot \alpha\) - The least period of the secant function is \(2\pi\) or \(360^\circ\):
\(\sec \left( {\alpha \pm 2\pi n} \right) = \sec \alpha\) - The least period of the cosecant function is \(2\pi\) or \(360^\circ\):
\(\csc \left( {\alpha \pm 2\pi n} \right) = \csc \alpha\)