Formulas

Elementary Algebra

Basic Algebra Formulas Logo

Inequalities

  • Real numbers: \(a\), \(b\), \(c\), \(d\), \(x\), \(m\), \(n\)
    Real positive numbers: \({a_1}\), \({a_2}\), …, \({a_n}\)
    1. Inequalities and intervals of the number line
    2. Inequalities and intervals of the number line
    3. Strict inequalities
      The notation \(a \lt b\) means that “\(a\) is less than \(b\)”,
      The notation \(a \gt b\) means that “\(a\) is greater than \(b\)”.
    4. Non-strict inequalities
      The notation \(a \le b\) means that “\(a\) is less than or equal to \(b\)”,
      The notation \(a \ge b\) means that “\(a\) is greater than or equal to \(b\)”.
    5. If \(a \gt b\), then \(b \lt a\).
    6. If \(a \gt b\), then \(a – b \gt 0\) or equivalently \(b – a \lt 0\).
    7. Transitivity property
      If\(a \gt b\) and \(b \gt c\), then \(a \gt c\).
    8. Adding the same number to the both sides of an inequality does not change the sign of the inequality:
      If \(a \gt b\), then \(a + c \gt b + c\).
    9. Moving any term of an inequality from one side to another and changing its sign results in an equivalent inequality:
      If \(a + b \gt c\), then \(a \gt c – b\).
    10. If \(a \gt b\) and \(c \gt d\), then \(a + c \gt b + d\).
    11. If \(a \gt b\) and \(c \gt d\), then \(a – d \gt b – c\).
    12. Multiplying both sides of an inequality by the same positive number does not change the sign of the inequality:
      If \(a \gt b\) and \(m \gt 0\), then \(ma \gt mb\).
    13. Dividing both sides of an inequality by the same positive number does not change the sign of the inequality:
      If \(a \gt b\) and \(m \gt 0\), then \(a/m > b/m\).
    14. Multiplying both sides of an inequality by the same negative number inverts the inequality:
      If \(a \gt b\) and \(m \lt 0\), then \(ma \lt mb\).
    15. Dividing both sides of an inequality by the same negative number inverts the inequality:
      If \(a \gt b\) and \(m \lt 0\), then \(a/m \lt b/m\).
    16. If \(a \gt b \gt 0\), then \(1/b \gt 1/a\).
    17. Multiplication of inequalities
      If \(a \gt b \gt 0\) and \(c \gt d \gt 0\), then \(ac \gt bd\).
    18. Division of inequalities
      If \(a \ge b \gt 0\) and \(c \gt d \gt 0\), then \(a/d \gt b/c\).
    19. Raising an inequality to a positive power
      If \(a \gt b \gt 0\) and \(n \gt 0\), then \({a^n} \gt {b^n}\).
    20. Raising an inequality to a negative power
      If \(a \gt b \gt 0\) and \(n \lt 0\), then \({a^n} \lt {b^n}\).
    21. \(N\)th root of an inequality
      If \(a \gt b \gt 0\) and \(n \gt 0\), then \(\sqrt[\large n\normalsize]{a} \gt \sqrt[\large n\normalsize]{b}\).
    22. \(a + \large\frac{1}{a}\normalsize \ge 2\;\) \(\left( {a \gt 0} \right)\)
      The equality holds only if \(a = 1\).
    23. Cauchy’s inequality of arithmetic and geometric means
      \(\sqrt {ab} \le \left( {a + b} \right)/2,\) where \(a \gt 0,\) \(b \gt 0\).
      The equality holds only when \(a = b\).
    24. Cauchy’s inequality of arithmetic and geometric means (the case of several variables)
      \(\sqrt[n]{{{a_1}{a_2} \cdots {a_n}}} \le\) \( {\large\frac{{{a_1} + {a_2} + \ldots + {a_n}}}{n}\normalsize},\) where \({a_1},{a_2}, \ldots ,{a_n} \gt 0\).
    25. Linear inequality (case \(a \gt 0\))
      If \(ax + b \gt 0\) and \(a \gt 0\), then \(x \gt -b/a\).
    26. Linear inequality (case \(a \lt 0\)) If \(ax + b \gt 0\) and \(a \lt 0\), then \(x \lt -b/a\).
    27. Quadratic inequality \(a{x^2} + bx + c \gt 0\)
    28. Graphical solutions of quadratic inequalities
    29. \(\left| {a + b} \right| \le \left| a \right| + \left| b \right|\)
    30. If \(\left| x \right| \lt a\), then \(-a \lt x \lt a,\) where \(a \gt 0\).
    31. If \(\left| x \right| \gt a\), then \(x \lt -a\) and \(x \gt a,\) where \(a \gt 0\).
    32. If \({x^2} \lt a\), then \(\left| x \right| \lt \sqrt a \), where \(a \gt 0\).
    33. If \({x^2} \gt a\), then \(\left| x \right| \gt \sqrt a \), where \(a \gt 0\).
    34. \({\large\frac{{f\left( x \right)}}{{g\left( x \right)}}\normalsize} \gt 0,\;\) \(\Leftrightarrow \;f\left( x \right)g\left( x \right) \gt 0\;\) \(\Leftrightarrow \;\begin{cases} {f\left( x \right)} \gt 0 \\ {g\left( x \right)} \gt 0 \end{cases}\;\) \(\text { or }\; \begin{cases} {f\left( x \right)} \lt 0 \\ {g\left( x \right)} \lt 0 \end{cases}. \)
    35. \({\large\frac{{f\left( x \right)}}{{g\left( x \right)}}\normalsize} \lt 0,\;\) \(\Leftrightarrow \;f\left( x \right)g\left( x \right) \lt 0\;\) \(\Leftrightarrow \;\begin{cases} {f\left( x \right)} \gt 0 \\ {g\left( x \right)} \lt 0 \end{cases}\;\) \(\text { or }\; \begin{cases} {f\left( x \right)} \lt 0 \\ {g\left( x \right)} \gt 0 \end{cases}. \)
    36. \({\large\frac{{f\left( x \right)}}{{g\left( x \right)}}\normalsize} \ge 0,\;\) \(\Leftrightarrow \; \begin{cases} {f\left( x \right) g\left( x \right)} \ge 0 \\ {g\left( x \right)} \ne 0 \end{cases}\;\) \(\Leftrightarrow \;\begin{cases} {f\left( x \right)} \ge 0 \\ {g\left( x \right)} \gt 0 \end{cases}\;\) \(\text { or }\; \begin{cases} {f\left( x \right)} \le 0 \\ {g\left( x \right)} \lt 0 \end{cases}. \)
    37. \({\large\frac{{f\left( x \right)}}{{g\left( x \right)}}\normalsize} \le 0,\;\) \(\Leftrightarrow \; \begin{cases} {f\left( x \right) g\left( x \right)} \le 0 \\ {g\left( x \right)} \ne 0 \end{cases}\;\) \(\Leftrightarrow \;\begin{cases} {f\left( x \right)} \le 0 \\ {g\left( x \right)} \gt 0 \end{cases}\;\) \(\text { or }\; \begin{cases} {f\left( x \right)} \ge 0 \\ {g\left( x \right)} \lt 0 \end{cases}. \)