Calculus

Double Integrals

Double Integrals Logo

Double Integrals in Polar Coordinates

One of the particular cases of change of variables is the transformation from Cartesian to polar coordinate system (Figure 1):

\[x = r\cos \theta ,\;\;y = r\sin \theta .\]
Polar coordinate system
Figure 1.

The Jacobian determinant for this transformation is

\[ \frac{{\partial \left( {x,y} \right)}}{{\partial \left( {r,\theta } \right)}} = \left| {\begin{array}{*{20}{c}} {\frac{{\partial x}}{{\partial r}}}&{\frac{{\partial x}}{{\partial \theta }}}\\ {\frac{{\partial y}}{{\partial r}}}&{\frac{{\partial y}}{{\partial \theta }}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} {\frac{{\partial \left( {r\cos \theta } \right)}}{{\partial r}}}&{\frac{{\partial \left( {r\cos \theta } \right)}}{{\partial \theta }}}\\ {\frac{{\partial \left( {r\sin \theta } \right)}}{{\partial r}}}&{\frac{{\partial \left( {r\sin \theta } \right)}}{{\partial \theta }}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} {\cos \theta }&{ - r\sin \theta }\\ {\sin\theta }&{r\cos \theta } \end{array}} \right| = \cos \theta \cdot r\cos \theta - \left( { - r\sin \theta } \right) \cdot \sin \theta = r\,{\cos ^2}\theta + r\,{\sin ^2}\theta = r\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) = r.\]

As a result, the differential for polar coordinates is

\[dxdy = \left| {\frac{{\partial \left( {x,y} \right)}}{{\partial \left( {r,\theta } \right)}}} \right|drd\theta = rdrd\theta .\]

Let the region \(R\) in polar coordinates be defined as follows (Figure \(2\)):

\[0 \le g\left( \theta \right) \le r \le h\left( \theta \right),\;\; \alpha \le \theta \le \beta ,\;\; \text{where}\;\;\beta - \alpha \le 2\pi .\]
A region of integration in polar coordinates
Figure 2.
Polar rectangle
Figure 3.

Then the double integral in polar coordinates is given by the formula

\[\iint\limits_R {f\left( {x,y} \right)dxdy} = \int\limits_\alpha ^\beta {\int\limits_{g\left( \theta \right)}^{h\left( \theta \right)} {f\left( {r\cos \theta ,r\sin \theta } \right)rdrd\theta } } \]

The region of integration (Figure \(3\)) is called the polar rectangle if it satisfies the following conditions:

\[0 \le a \le r \le b,\;\; \alpha \le \theta \le \beta ,\;\; \text{where}\;\;\beta - \alpha \le 2\pi .\]

In this case the formula for change of variables can be written as

\[\iint\limits_R {f\left( {x,y} \right)dxdy} = \int\limits_\alpha ^\beta {\int\limits_{a}^{b} {f\left( {r\cos \theta ,r\sin \theta } \right)rdrd\theta } } .\]

Be careful not to forget the factor \(r\) (the Jacobian) in the right-hand side of the formula!

Solved Problems

Example 1.

Calculate the double integral \[\iint\limits_R {\left( {{x^2} + {y^2}} \right)dydx}\] by transforming to polar coordinates. The region of integration \(R\) is the sector \(0 \le \theta \le {\frac{\pi }{2}}\) of a circle with radius \(r = \sqrt 3.\)

Solution.

The region \(R\) is the polar rectangle \(\left({\text{Figure }4}\right)\) and described by the set

\[R = \Big\{ {\left( {r,\theta } \right)|\;0 \le r \le \sqrt 3 ,\; 0 \le \theta \le {\frac{\pi }{2}}} \Big\} .\]
Region of integration as a sector of a circle
Figure 4.

Using the formula

\[\iint\limits_R {f\left( {x,y} \right)dxdy} = \int\limits_\alpha ^\beta {\int\limits_{a}^{b} {f\left( {r\cos \theta ,r\sin \theta } \right)rdrd\theta } },\]

we obtain

\[\iint\limits_R {\left( {{x^2} + {y^2}} \right)dydx} = \int\limits_0^{\frac{\pi }{2}} {\int\limits_0^{\sqrt 3 } {{r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)rdrd\theta } } = \int\limits_0^{\frac{\pi }{2}} {d\theta } \int\limits_0^{\sqrt 3 } {{r^3}dr} = \left. \theta \right|_0^{\frac{\pi }{2}} \cdot \left. {\left( {\frac{{{r^4}}}{4}} \right)} \right|_0^{\sqrt 3 } = \frac{\pi }{2} \cdot \frac{9}{4} = \frac{{9\pi }}{8}.\]

Example 2.

Evaluate the integral \[\iint\limits_R {xydydx},\] where the region of integration \(R\) lies in the sector \(0 \le \theta \le \frac{\pi}{2}\) between the curves \({x^2} + {y^2} = 1\) and \({x^2} + {y^2} = 5.\)

Solution.

In polar coordinates, the region of integration \(R\) is the polar rectangle \(\left({\text{Figure }5}\right):\)

\[R = \left\{ {\left( {r,\theta } \right)|\;1 \le r \le \sqrt 5 ,\; 0 \le \theta \le \frac{\pi}{2} } \right\}.\]
The region of integration is a ring in the first quadrant
Figure 5.

So using the formula

\[\iint\limits_R {f\left( {x,y} \right)dxdy} = \int\limits_\alpha ^\beta {\int\limits_{a}^{b} {f\left( {r\cos \theta ,r\sin \theta } \right)rdrd\theta } },\]

we find the integral:

\[\iint\limits_R {xydydx} = \int\limits_0^{\frac{\pi}{2}} {\int\limits_1^{\sqrt 5 } {r\cos \theta r\sin \theta rdrd\theta } } = \int\limits_0^{\frac{\pi}{2}} {\sin \theta \cos \theta d\theta } \int\limits_1^{\sqrt 5 } {{r^3}dr} = \frac{1}{2}\int\limits_0^{\frac{\pi}{2}} {\sin 2\theta d\theta } \int\limits_1^{\sqrt 5 } {{r^3}dr} = \frac{1}{2}\left. {\left( { - \frac{{\cos 2\theta }}{2}} \right)} \right|_0^{\frac{\pi}{2}} \cdot \left. {\left( {\frac{{{r^4}}}{4}} \right)} \right|_1^{\sqrt 5 } = \frac{1}{4}\left( { - \cos \pi + \cos 0} \right) \cdot \frac{1}{4}\left( {25 - 1} \right) = \frac{1}{4}\left( { 1 + 1} \right) \cdot 6 = 3.\]

See more problems on Page 2.

Page 1 Page 2