Definition of Triple Integral
We can introduce the triple integral similar to double integral as a limit of a Riemann sum. We start from the simplest case when the region of integration \(U\) is a rectangular box \(\left[ {a,b} \right] \times \left[ {c,d} \right] \) \(\times \left[ {p,q} \right]\) (Figure \(1\)).
Let the set of numbers \(\left\{ {{x_0},{x_1}, \ldots ,{x_m}} \right\}\) be a partition of \(\left[ {a,b} \right]\) into small intervals so that the following relations are valid:
\[{a = {x_0} \lt }\kern0pt{ {x_0} \lt {x_1} \lt {x_2} \lt \ldots} { \lt {x_i} \lt \ldots } {\lt {x_{m – 1}} \lt {x_m} }={ b.}\]
Similarly, we can construct partitions of the segment \(\left[ {c,d} \right]\) along the \(y\)-axis and the segment \(\left[ {p,q} \right]\) along the \(z\)-axis:
\[{c }={ {y_0} \lt {y_1} \lt {y_2} \lt \ldots}\kern0pt { \lt {y_j} \lt \ldots }\kern0pt {\lt {y_{n – 1}} \lt {y_n} }={ d,}\]
\[{p }={ {z_0} \lt {z_1} \lt {z_2} \lt \ldots}\kern0pt { \lt {z_k} \lt \ldots }\kern0pt {\lt {z_{\ell – 1}} \lt {z_\ell} }={ q.}\]
The Riemann sum of the function \(f\left( {x,y,z} \right)\) over the partition of \(\left[ {a,b} \right] \times \left[ {c,d} \right] \) \(\times \left[ {p,q} \right]\) is defined by
\[{\sum\limits_{i = 1}^m {\sum\limits_{j = 1}^n {\sum\limits_{k = 1}^{\ell} {f\left( {{u_i},{v_j},{w_k}} \right) }}\kern0pt{{ \Delta {x_i}\Delta {y_j}\Delta {z_k}} } } }\]
Here \({\left( {{u_i},{v_j},{w_k}} \right)}\) is some point in the rectangular box \(\left( {{x_{i – 1}},{x_i}} \right) \) \(\times \left( {{y_{j – 1}},{y_j}} \right) \) \(\times \left( {{z_{k – 1}},{z_k}} \right),\) and the differences are
\[
{\Delta {x_i} = {x_i} – {x_{i – 1}},\;\;}\kern-0.3pt
{\Delta {y_j} = {y_j} – {y_{j – 1}},\;\;}\kern-0.3pt
{\Delta {z_k} = {z_k} – {z_{k – 1}}.}
\]
The triple integral of a function \(f\left( {x,y,z} \right)\) in the parallelepiped \(\left[ {a,b} \right] \times \left[ {c,d} \right] \times \left[ {p,q} \right]\) is defined as a limit of the Riemann sum, such that the maximum values of the differences \(\Delta {x_i},\) \(\Delta {y_j}\) and \(\Delta {z_k}\) approach zero:
\[\require{AMSmath.js} {\iiint\limits_{\left[ {a,b} \right] \times \left[ {c,d} \right] \times \left[ {p,q} \right]} {f\left( {x,y,z} \right)dV \text{ = }} }\kern0pt {\lim\limits_{\substack{ \text{max}\,\Delta {x_i} \to 0\\ \text{max}\,\Delta {y_j} \to 0\\ \text{max}\,\Delta {z_k} \to 0}} {\sum\limits_{i = 1}^m {\sum\limits_{j = 1}^n {\sum\limits_{k = 1}^\ell} {f\left( {{u_i},{v_j},{w_k}} \right)\cdot }}}\kern0pt{{{ \Delta {x_i}\Delta {y_j}\Delta {z_k}} } } } \]
To define the triple integral over a general region \(U,\) we choose a rectangular box \(\left[ {a,b} \right] \) \(\times \left[ {c,d} \right] \) \(\times \left[ {p,q} \right]\) containing the given region \(U.\) Then we introduce the function \(g\left( {x,y,z} \right)\) such that
\[
\begin{cases}
{g\left( {x,y,z} \right) }={ f\left( {x,y,z} \right),} \text{ if}\;f \in U \
{g\left( {x,y,z} \right) }={ 0,} \text{ if}\;f \notin U
\end{cases}
\]
Then the triple integral of the function \(f\left( {x,y,z} \right)\) over a general region \(U\) is defined as
\[
{\iiint\limits_U {f\left( {x,y,z} \right)dV} }
= {\iiint\limits_{\left[ {a,b} \right] \times \left[ {c,d} \right] \times \left[ {p,q} \right]} {g\left( {x,y,z} \right)dV} .}
\]
Properties of Triple Integrals
Let \(f\left( {x,y,z} \right)\) and \(g\left( {x,y,z} \right)\) be functions which are integrable in the region \(U.\) Then the following properties are valid:
- \({\iiint\limits_U {\left[ {f\left( {x,y,z} \right) + g\left( {x,y,z} \right)} \right]dV} }\) \(= {\iiint\limits_U {f\left( {x,y,z} \right)dV} }\) \(+{ \iiint\limits_U {g\left( {x,y,z} \right)dV} ;} \)
- \({\iiint\limits_U {\left[ {f\left( {x,y,z} \right) – g\left( {x,y,z} \right)} \right]dV} }\) \(= {\iiint\limits_U {f\left( {x,y,z} \right)dV} }\) \(-{ \iiint\limits_U {g\left( {x,y,z} \right)dV} ;}\)
- \({\iiint\limits_U {kf\left( {x,y,z} \right)dV} }\) \(={ k\iiint\limits_U {f\left( {x,y,z} \right)dV},}\) where \(k\) is a constant;
- If \({f\left( {x,y,z} \right)} \le {g\left( {x,y,z} \right)}\) at any point of the region \(U,\) then \({\iiint\limits_U {f\left( {x,y,z} \right)dV} }\le{ \iiint\limits_U {g\left( {x,y,z} \right)dV} ;}\)
- If the region \(U\) is a union of two non-overlapping regions \({U_1}\) and \({U_2},\) then \({\iiint\limits_U {f\left( {x,y,z} \right)dV} } = {\iiint\limits_{{U_1}} {f\left( {x,y,z} \right)dV} } + {\iiint\limits_{{U_2}} {f\left( {x,y,z} \right)dV} ;}\)
- Let \(m\) be the minimum and \(M\) be the maximum value of a continuous function \(f\left( {x,y,z} \right)\) in the region \(U.\) Then the following estimate is valid for the triple integral: \({m \cdot V }\le {\iiint\limits_U {f\left( {x,y,z} \right)dV} }\le{ M \cdot V,}\) where \(V\) is the volume of the integration region \(U.\)
- The Mean Value Theorem for Triple Integrals
If a function \(f\left( {x,y,z} \right)\) is continuous in the region \(U,\) then there exists a point \({M_0} \in U\) such that \({\iiint\limits_U {f\left( {x,y,z} \right)dV} }={ f\left( {{M_0}} \right) \cdot V,}\) where \(V\) is the volume of the region \(U.\)
Solved Problems
Click or tap a problem to see the solution.
Example 1
Evaluate the maximum value of the triple integralExample 2
Evaluate the maximum and minimum values of the triple integralExample 1.
Evaluate the maximum value of the triple integralSolution.
The equation of the ball is given by
\[{{x^2} + {y^2} + {z^2} }\le{ 36.}\]
Using the property \(6,\) we can write:
\[I \le M \cdot V,\]
where the volume \(V\) of the ball is
\[{V = \frac{4}{3}\pi {R^3} }={ \frac{4}{3}\pi \cdot {6^3} }={ 288\pi .}\]
The maximum value \(M\) of the integrand is
\[{M = \frac{1}{{\sqrt {100 – 36} }} }={ \frac{1}{8}.}\]
From here we can get the maximum value of the triple integral:
\[{I \le \frac{1}{8} \cdot 288\pi }={ 36\pi .}\]
Example 2.
Evaluate the maximum and minimum values of the triple integralSolution.
First we calculate the volume of the region of integration \(U:\)
\[V = 1 \cdot 2 \cdot 3 = 6.\]
The estimate of the integral is defined by the inequality
\[m \cdot V \le I \le M \cdot V.\]
Here the minimum value \(m\) of the integrand is
\[
{m }={ \frac{1}{{\ln \left( {e + 1 + 2 + 3} \right)}} }
= {\frac{1}{{\ln \left( {e + 6} \right)}}.}
\]
Accordingly, the maximum value \(M\) is
\[M = \frac{1}{{\ln e}} = 1.\]
Thus, the estimate of the integral is
\[{\frac{6}{{\ln \left( {e + 6} \right)}} \le I }\le{ 6.}\]