Cosine Subtraction Formula
Let \(\alpha, \beta\) be two angles such that \(\alpha \gt \beta.\) Take the following points on a unit circle: \(A\left( 0 \right),\) \(M\left( \alpha \right),\) \(N\left( \beta \right),\) \(P\left( {\alpha – \beta } \right).\)
The coordinates of these points are
\[{A = A\left( {1,0} \right),\;\;}\kern0pt{M = M\left( {\cos \alpha ,\sin \alpha } \right),\;\;}\kern0pt{N = N\left( {\cos \beta ,\sin \beta } \right),\;\;}\kern0pt{P = P\left( {\cos \left( {\alpha – \beta } \right),\sin \left( {\alpha – \beta } \right)} \right).}\]
Since \(\angle MON = \angle POA = \alpha – \beta,\) the line segments \(\color{#cc00ff}{MN}\) and \(\color{#0099ff}{AP}\) have the same length:
\[\left| \color{#cc00ff}{MN} \right| = \left| \color{#0099ff}{AP} \right|.\]
The distance between two points on a plane is given by the formula
\[d = \sqrt {{{\left( {{x_1} – {x_2}} \right)}^2} + {{\left( {{y_1} – {y_2}} \right)}^2}} .\]
Therefore,
\[{{\left| \color{#cc00ff}{MN} \right|^2} }={ {\left( {{x_M} – {x_N}} \right)^2} + {\left( {{y_M} – {y_N}} \right)^2} }={ {\left( {\cos \alpha – \cos \beta } \right)^2} + {\left( {\sin \alpha – \sin \beta } \right)^2} }={ {\cos ^2}\alpha – 2\cos \alpha \cos \beta + {\cos ^2}\beta }+{ {\sin ^2}\alpha – 2\sin \alpha \sin \beta + {\sin ^2}\beta }={ \underbrace {{{\cos }^2}\alpha + {{\sin }^2}\alpha }_1 + \underbrace {{{\cos }^2}\beta + {{\sin }^2}\beta }_1 }-{ 2\left( {\cos \alpha \cos \beta }+{ \sin \alpha \sin \beta } \right) }={ 2 – 2\left( {\cos \alpha \cos \beta + \sin \alpha \sin \beta } \right);}\]
Similarly we find the distance \(\left| \color{#0099ff}{AP} \right|\) squared:
\[{{\left| \color{#0099ff}{AP} \right|^2} }={ {\left( {{x_A} – {x_P}} \right)^2} + {\left( {{y_A} – {y_P}} \right)^2} }={ {\left( {1 – \cos \left( {\alpha – \beta } \right)} \right)^2} }+{ {\left( {0 – \sin \left( {\alpha – \beta } \right)} \right)^2} }={ 1 – 2\cos \left( {\alpha – \beta } \right) }+{ \underbrace {{{\cos }^2}\left( {\alpha – \beta } \right) + {{\sin }^2}\left( {\alpha – \beta } \right)}_1 }={ 2 – 2\cos \left( {\alpha – \beta } \right).}\]
The cosine subtraction formula follows from the equality \({\left| \color{#cc00ff}{MN} \right|^2} = {\left| \color{#0099ff}{AP} \right|^2}:\)
Cosine Addition Formula
Consider two points \(N\left( \beta \right)\) and \(L\left( { – \beta } \right)\) lying on the terminal sides of the angles \(\beta\) and \(-\beta,\) respectively.
These points are symmetric with respect to the \(x-\)axis. Therefore, they have the same \(x-\)coordinates. Their \(y-\)coordinates are equal in magnitude but opposite in sign. In other words, the cosine function is even and the sine function is odd:
Now, let’s go back to the cosine subtraction formula and replace \(\beta \to -\beta:\)
\[{\cos \left( {\alpha + \beta } \right) }={ \cos \alpha \cos \left( { – \beta } \right) }+{ \sin \alpha \sin \left( { – \beta } \right).}\]
Since cosine is even and sine is odd, we get the cosine addition identity in the form
Special Cases
Substitute \(\alpha = \large{\frac{\pi }{2}}\normalsize\) in the cosine subtraction formula:
\[{\cos \left( {\frac{\pi }{2} – \beta } \right) }={ \cos \frac{\pi }{2}\cos \beta }+{ \sin \frac{\pi }{2}\sin \beta }={ 0 \cdot \cos \beta }+{ 1 \cdot \sin \beta }={ \sin \beta ,}\]
that is,
Replace \(\beta \to \large{\frac{\pi }{2}}\normalsize – \beta\) in the last expression:
\[{\sin \left( {\frac{\pi }{2} – \beta } \right) }={ \cos \left( {\frac{\pi }{2} – \left( {\frac{\pi }{2} – \beta } \right)} \right) }={ \cos \beta ,}\]
or
Similarly, take the cosine addition formula and substitute \(\alpha = \large{\frac{\pi }{2}}\normalsize:\)
\[{\cos \left( {\frac{\pi }{2} + \beta } \right) }={ \cos \frac{\pi }{2}\cos \beta – \sin \frac{\pi }{2}\sin \beta }={ 0 \cdot \cos \beta – 1 \cdot \sin \beta }={ – \sin \beta .}\]
We got the following identity:
By changing \(\beta \to -\beta\) in the identity \(\sin \left( {\large{\frac{\pi }{2}}\normalsize – \beta } \right) = \cos \beta ,\) we obtain
\[{\sin \left( {\frac{\pi }{2} + \beta } \right) }={ \cos \left( { – \beta } \right) }={ \cos \beta ,}\]
that is,
Sine Subtraction Formula
Using cofunction identities from the previous section, we derive the sine subtraction formula:
\[{\sin \left( {\alpha – \beta } \right) }={ \cos \left( {\frac{\pi }{2} – \left( {\alpha – \beta } \right)} \right) }={ \cos \left( {\left( {\frac{\pi }{2} – \alpha } \right) + \beta } \right) }={ \cos \left( {\frac{\pi }{2} – \alpha } \right)\cos \beta }-{ \sin \left( {\frac{\pi }{2} – \alpha } \right)\sin \beta }={ \sin \alpha \cos \beta – \cos \alpha \sin \beta .}\]
Thus, we have
Sine Addition Formula
If we replace \(\beta \to -\beta\) in this formula, we get the sine addition identity:
\[{\sin \left( {\alpha + \beta } \right) }={ \sin \alpha \cos \left( { – \beta } \right) }-{ \cos \alpha \sin \left( { – \beta } \right) }={ \sin \alpha \cos \beta + \cos \alpha \sin \beta .}\]
Hence,
Solved Problems
Click or tap a problem to see the solution.
Example 1
Calculate \(\cos \large{\frac{{5\pi }}{{12}}}\normalsize.\)Example 2
Calculate \(\sin \large{\frac{{\pi }}{{12}}}\normalsize.\)Example 3
Find the exact value of \(\sin \large{\frac{{7\pi }}{{5}}}\normalsize.\)Example 4
Find the exact value of \(\cos 105^\circ.\)Example 5
Determine the value of \(\cos \left( {\large{\frac{\pi }{3}}\normalsize + \alpha } \right)\) if \(\sin \alpha = \large{\frac{1}{{\sqrt 3 }}}\normalsize\) and the angle \(\alpha\) lies in the \(1\text{st}\) quadrant.Example 6
Determine the value of \(\sin \left( {\large{\frac{\pi }{4}}\normalsize – \beta } \right)\) if \(\cos \beta = -\large{\frac{1}{2}}\normalsize\) and the angle \(\beta\) is in the \(2\text{nd}\) quadrant.Example 7
Prove the identity \[{\cos \left( {\alpha + \beta } \right)\cos \left( {\alpha – \beta } \right) }={ {\cos ^2}\alpha – {\sin ^2}\beta. }\]Example 8
Prove the identity \[{\sin \left( {\alpha + \beta } \right)\sin \left( {\alpha – \beta } \right) }={ {\sin ^2}\alpha – {\sin ^2}\beta.}\]Example 9
Find the greatest and least value of \(\sin\alpha + \cos\alpha.\)Example 10
Find the greatest and least value of \(\sin\beta – \sqrt{3}\cos\beta.\)Example 1.
Calculate \(\cos \large{\frac{{5\pi }}{{12}}}\normalsize.\)Solution.
We represent the angle \(\large{\frac{{5\pi }}{{12}}}\normalsize\) as the sum of two angles:
\[{\frac{{5\pi }}{{12}} = \frac{{3\pi + 2\pi }}{{12}} }={ \frac{{3\pi }}{{12}} + \frac{{2\pi }}{{12}} }={ \frac{\pi }{4} + \frac{\pi }{6}.}\]
Using the cosine addition formula, we have
\[{\cos \frac{{5\pi }}{{12}} }={ \cos \left( {\frac{\pi }{4} + \frac{\pi }{6}} \right) }={ \cos \frac{\pi }{4}\cos \frac{\pi }{6} – \sin \frac{\pi }{4}\sin \frac{\pi }{6} }={ \frac{{\sqrt 2 }}{2} \cdot \frac{{\sqrt 3 }}{2} – \frac{{\sqrt 2 }}{2} \cdot \frac{1}{2} }={ \frac{{\sqrt 6 }}{4} – \frac{{\sqrt 2 }}{4} }={ \frac{{\sqrt 6 – \sqrt 2 }}{4}.}\]
Example 2.
Calculate \(\sin \large{\frac{{\pi }}{{12}}}\normalsize.\)Solution.
Since
\[{\frac{\pi }{{12}} = \frac{{4\pi – 3\pi }}{{12}} }={ \frac{{4\pi }}{{12}} – \frac{{3\pi }}{{12}} }={ \frac{\pi }{3} – \frac{\pi }{4},}\]
then by the sine subtraction formula:
\[{\sin \frac{\pi }{{12}} }={ \sin \left( {\frac{\pi }{3} – \frac{\pi }{4}} \right) }={ \sin \frac{\pi }{3}\cos \frac{\pi }{4} – \cos \frac{\pi }{3}\sin \frac{\pi }{4} }={ \frac{{\sqrt 3 }}{2} \cdot \frac{{\sqrt 2 }}{2} – \frac{1}{2} \cdot \frac{{\sqrt 2 }}{2} }={ \frac{{\sqrt 6 }}{4} – \frac{{\sqrt 2 }}{4} }={ \frac{{\sqrt 6 – \sqrt 2 }}{4}.}\]
Notice that
\[{\sin \frac{\pi }{{12}} }={ \cos \left( {\frac{\pi }{2} – \frac{\pi }{{12}}} \right) }={ \cos \frac{{6\pi – \pi }}{{12}} }={ \cos \frac{{5\pi }}{{12}} }={ \frac{{\sqrt 6 – \sqrt 2 }}{4}.}\]
Example 3.
Find the exact value of \(\sin \large{\frac{{7\pi }}{{5}}}\normalsize.\)Solution.
We write the given angle in the form
\[{\frac{{7\pi }}{{12}} = \frac{{4\pi + 3\pi }}{{12}} }={ \frac{{4\pi }}{{12}} + \frac{{3\pi }}{{12}} }={\frac{\pi }{3} + \frac{\pi }{4}.}\]
Use the sine addition identity:
\[{\sin \frac{{7\pi }}{{12}} }={ \sin \left( {\frac{\pi }{3} + \frac{\pi }{4}} \right) }={ \sin \frac{\pi }{3}\cos \frac{\pi }{4} + \cos \frac{\pi }{3}\sin \frac{\pi }{4} }={ \frac{{\sqrt 3 }}{2} \cdot \frac{{\sqrt 2 }}{2} + \frac{1}{2} \cdot \frac{{\sqrt 2 }}{2} }={ \frac{{\sqrt 6 }}{4} + \frac{{\sqrt 2 }}{4} }={ \frac{{\sqrt 6 + \sqrt 2 }}{4}.}\]
Example 4.
Find the exact value of \(\cos 105^\circ.\)Solution.
We write the angle \(105^\circ\) as the sum of two angles:
\[{105^\circ} = {60^\circ} + {45^\circ}.\]
Therefore,
\[{\cos {105^\circ} = \cos \left( {{{60}^\circ} + {{45}^\circ}} \right) }={ \cos {60^\circ}\cos {45^\circ} – \sin {60^\circ}\sin {45^\circ} }={ \frac{1}{2} \cdot \frac{{\sqrt 2 }}{2} – \frac{{\sqrt 3 }}{2} \cdot \frac{{\sqrt 2 }}{2} }={ \frac{{\sqrt 2 – \sqrt 6 }}{4} }={ – \frac{{\sqrt 6 – \sqrt 2 }}{4}.}\]
Example 5.
Determine the value of \(\cos \left( {\large{\frac{\pi }{3}}\normalsize + \alpha } \right)\) if \(\sin \alpha = \large{\frac{1}{{\sqrt 3 }}}\normalsize\) and the angle \(\alpha\) lies in the \(1\text{st}\) quadrant.Solution.
The cosine function is positive in the \(1\text{st}\) quadrant. Therefore
\[{\cos \alpha = \sqrt {1 – {{\sin }^2}\alpha } }={ \sqrt {1 – {{\left( {\frac{1}{{\sqrt 3 }}} \right)}^2}} }={ \sqrt {1 – \frac{1}{3}} }={ \sqrt {\frac{2}{3}} }={ \frac{{\sqrt 2 }}{{\sqrt 3 }}.}\]
Now we use the cosine addition formula:
\[{\cos \left( {\frac{\pi }{3} + \alpha } \right) }={ \cos \frac{\pi }{3}\cos \alpha – \sin \frac{\pi }{3}\sin \alpha }={ \frac{1}{2} \cdot \frac{{\sqrt 2 }}{{\sqrt 3 }} – \frac{{\sqrt 3 }}{2} \cdot \frac{1}{{\sqrt 3 }} }={ \frac{{\sqrt 2 – \sqrt 3 }}{{2\sqrt 3 }} }={ \frac{{\sqrt 6 – 3}}{6}.}\]
We can note that the cosine of this angle is negative.
Example 6.
Determine the value of \(\sin \left( {\large{\frac{\pi }{4}}\normalsize – \beta } \right)\) if \(\cos \beta = -\large{\frac{1}{2}}\normalsize\) and the angle \(\beta\) is in the \(2\text{nd}\) quadrant.Solution.
The sine is positive in the \(2\text{nd}\) quadrant. Hence,
\[{\sin \beta = \sqrt {1 – {{\sin }^2}\beta } }={ \sqrt {1 – {{\left( { – \frac{1}{2}} \right)}^2}} }={ \sqrt {1 – \frac{1}{4}} }={ \sqrt {\frac{3}{4}} }={ \frac{{\sqrt 3 }}{2}.}\]
Using the sine difference identity, we obtain
\[{\sin \left( {\frac{\pi }{4} – \beta } \right) }={ \sin \frac{\pi }{4}\cos \beta – \cos \frac{\pi }{4}\sin \beta }={ \frac{{\sqrt 2 }}{2} \cdot \left( { – \frac{1}{2}} \right) – \frac{{\sqrt 2 }}{2} \cdot \frac{{\sqrt 3 }}{2} }={ – \frac{{\sqrt 2 – \sqrt 6 }}{4} }={ \frac{{\sqrt 6 – \sqrt 2 }}{4}.}\]
Example 7.
Prove the identity \[{\cos \left( {\alpha + \beta } \right)\cos \left( {\alpha – \beta } \right) }={ {\cos ^2}\alpha – {\sin ^2}\beta.}\]Solution.
Simplify the left-hand side \(LHS\) using the cosine addition and subtraction formulas:
\[{LHS }={ \cos \left( {\alpha + \beta } \right)\cos \left( {\alpha – \beta } \right) }={ \left( {\cos \alpha \cos \beta – \sin \alpha \sin \beta } \right)}\kern0pt{\cdot\left( {\cos \alpha \cos \beta + \sin \alpha \sin \beta } \right) }={ {\cos ^2}\alpha \,{\cos ^2}\beta – {\sin ^2}\alpha\,{\sin ^2}\beta .}\]
Recall that
\[{{\cos ^2}\beta = 1 – {\sin ^2}\beta \;\;\text{and}\;\;}\kern0pt{{\sin ^2}\alpha = 1 – {\cos ^2}\alpha .}\]
Then
\[\require{cancel}{LHS }={ {\cos ^2}\alpha \left( {1 – {{\sin }^2}\beta } \right) }-{ \left( {1 – {{\cos }^2}\alpha } \right){\sin ^2}\beta }={ {\cos ^2}\alpha – \cancel{{\cos ^2}\alpha \,{\sin ^2}\beta }}-{ {\sin ^2}\beta + \cancel{{\cos ^2}\alpha \,{\sin ^2}\beta} }={ {\cos ^2}\alpha – {\sin ^2}\beta }={ RHS.}\]
Example 8.
Prove the identity \[{\sin \left( {\alpha + \beta } \right)\sin \left( {\alpha – \beta } \right) }={ {\sin ^2}\alpha – {\sin ^2}\beta.}\]Solution.
We write the left-hand side in the form
\[{LHS }={ \sin \left( {\alpha + \beta } \right)\sin \left( {\alpha – \beta } \right) }={ \left( {\sin \alpha \cos \beta + \cos \alpha \sin \beta } \right)}\kern0pt{\cdot\left( {\sin \alpha \cos \beta – \cos \alpha \sin \beta } \right) }={ {\sin ^2}\alpha\, {\cos ^2}\beta – {\cos ^2}\alpha \,{\sin ^2}\beta .}\]
Using the Pythagorean trig identities
\[{{\cos ^2}\alpha = 1 – {\sin ^2}\alpha ,\;\;}\kern0pt{{\cos ^2}\beta = 1 – {\sin ^2}\beta ,}\]
we get
\[{LHS }={ {\sin ^2}\alpha \left( {1 – {{\sin }^2}\beta } \right) }-{ \left( {1 – {{\sin }^2}\alpha } \right){\sin ^2}\beta }={ {\sin ^2}\alpha – \cancel{{\sin ^2}\alpha \,{\sin ^2}\beta} }-{ {\sin ^2}\beta + \cancel{{\sin ^2}\alpha \,{\sin ^2}\beta} }={ {\sin ^2}\alpha – {\sin ^2}\beta }={ RHS.}\]
Example 9.
Find the greatest and least value of \(\sin\alpha + \cos\alpha.\)Solution.
We denote this expression by \(A.\) Using the auxiliary angle \(\frac{\pi }{4},\) we have
\[{\frac{{A\sqrt 2 }}{2} }={ \sin \alpha \frac{{\sqrt 2 }}{2} + \cos \alpha \frac{{\sqrt 2 }}{2} }={ \sin \alpha \cos \frac{\pi }{4} + \cos \alpha \sin \frac{\pi }{4} }={ \sin \left( {\alpha + \frac{\pi }{4}} \right).}\]
Hence,
\[A = \sqrt 2 \sin \left( {\alpha + \frac{\pi }{4}} \right).\]
The function \(\sin \left( {\alpha + \large{\frac{\pi }{4}}\normalsize} \right)\) ranges from \(-1\) to \(1.\) Therefore, the maximum value of \(A\) is \(\sqrt{2},\) and the minimum value is \(-\sqrt{2}.\)
Example 10.
Find the greatest and least value of \(\sin\beta – \sqrt{3}\cos\beta.\)Solution.
Let the value of this expression be denoted by \(B.\) We can represent it in the following form:
\[{\frac{B}{2} }={ \frac{1}{2}\sin \beta – \frac{{\sqrt 3 }}{2}\cos \beta }={ \sin \frac{\pi }{6}\sin \beta – \cos \frac{\pi }{6}\cos \beta }={ – \left( {\cos \frac{\pi }{6}\cos \beta – \sin \frac{\pi }{6}\sin \beta } \right) }={ – \cos \left( {\frac{\pi }{6} + \beta } \right).}\]
Then
\[B = – 2\cos \left( {\frac{\pi }{6} + \beta } \right).\]
The maximum value of cosine is \(1,\) and the minimum value is \(-1.\) Respectively, the greatest value of \(B\) is \(2,\) and the least value is\(-2.\)