Math24.net
Calculus
Home
Calculus
Limits and Continuity
Differentiation
Applications of Derivative
Integration
Sequences and Series
Double Integrals
Triple Integrals
Line Integrals
Surface Integrals
Fourier Series
Differential Equations
1st Order Equations
2nd Order Equations
Nth Order Equations
Systems of Equations
Formulas and Tables
   Change of Variables in Double Integrals
Sometimes, it is often advantageous to evaluate in a coordinate system other than the xy-coordinate system.
This may be as a consequence either of the shape of the region, or of the complexity of the integrand.
Calculating the double integral in the new coordinate system can be much simpler.

The formula for change of variables is given by
change of variables in double integral
where the expression Jacobian in double integral is the so-called Jacobian of the transformation , and S is the pullback of the region of integration R which can be computed by substituting into the definition of R. Notice, that in the formula above means the absolute value of the appropriate determinant.

Supposing that the transformation is a 1-1 mapping from R to a region S, the inverse relation is described by the Jacobian


Thus, use of change of variables in a double integral requires the following 3 steps:
  1. Find the pulback S in the new coordinate system for the initial region of integration R;

  2. Calculate the Jacobian of the transformation and write down the differential through the new variables: ;

  3. Replace x and y in the integrand by substituting and , respectively.
   Example 1
Calculate the double integral , where the region R is bounded by .

Solution.
The sketch of the region R is given in Figure 1. We use change of variables to simplify the integral. By letting , we have
     
Hence, the pullback S of the region R is the rectangle shown in Figure 2.
Fig.1
Fig.2
Calculate the Jacobian of this transformation.
     
Then the absolute value of the Jacobian is
     
Hence, the differential is
     
so calculating the integral in the new variables is much simpler:
     
   Example 2
Evaluate the double integral , where the region of integration R is bounded by the lines .

Solution.
The region R is an irregular triangle and shown in Figure 3. To simplify the region of integration, we make the following substitution: . Express x, y as functions of u, v and define the pullback S of the region of integration in the new coordinates. It is easy to see that
     
Fig.3
Fig.4
We notice that
     
Hence,
     
Then we have
     
When , we have . And when , then . As a result, we can draw the pullback region S (Figure 4 above). It looks as a right triangle.

The equation of the line can be written as
     
Find the Jacobian:
     
Hence, and the initial double integral is
     
   Example 3
Calculate the double integral , where the region R is bounded by the parabolas and hyperbolas .

Solution.
The region R is sketched in Figure 5.
Fig.5
We apply the following substitution of variables to simplify the region R:
     
The pulback S of the region R is defined as follows
     
As can be seen, the region S is the rectangle. To find the Jacobian of the transformation, we express the variables x, y through u, v.
     
Then
     
Find the Jacobian:
     
The relation between the differentials is
     
Then we can write the integral as
     
   Example 4
Evaluate the integral , where R is bounded by the lines .

Solution.
The region of integration R is a parallelogram and shown in Figure 6.
Fig.6
Fig.7
We can make the following change of variables:
     
The purpose of this change is to simplify shape of the region of integration R.
The image S of R in terms of u, v is defined as
     
As seen from the Figure 7, S is the rectangular region. Calculate the Jacobian.
     
so that
     
Now we can write the double integral as
     

All Rights Reserved © www.math24.net, 2010-2014   info@math24.net